NOTE

Molecular Phylogenetic Status of Korean Strain of *Podosphaera xanthii*, a Causal Pathogen of Powdery Mildew on Japanese Thistle (*Cirsium japonicum*) in Korea

Hyang Burm Lee*

Division of Applied Bioscience & Biotechnology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea

(Received November 13, 2012 / Accepted December 12, 2012)

Powdery mildew diseases are sensitive to climate change and spread can be favored by increased temperature and low moisture. During 2011 to 2012, a powdery mildew disease by a *Podosphaera* species was observed on the leaves of Japanese thistle (*Cirsium japonicum*) in Korea. The initial sign of this disease included scattered superficial white mycelia on leaves. As the disease progressed, abundant necrotic black spots exhibiting chasmothecia were formed on the leaves. rDNA ITS and 28S homologies of the fungus (EML-CSPW1) showed 100% identity values with those regions from many strains of *P. xanthii* (syn. *P. fusca*) via NCBI BLASTN search.

Keywords: Asteraceae, climate change disease, Japanese thistle, ITS and 28S rDNA sequences, powdery mildew

Powdery mildew is a climate change disease and can spread with the increase in temperature and low moisture (Osava, 2010; Siebold and Tiedemann, 2012). From August to October in both 2011 and 2012, a powdery mildew disease caused by a *Podosphaera* species was observed on the leaves of Japanese thistle (*Cirsium japonicum* Fisch. ex DC.) in most areas of Korea. Japanese thistle is a species of Asteraceae and is known commonly as a noxious weed throughout the world. Also, it has beneficial effects as an antioxidant, and has anticancer properties (Yu *et al.*, 2008).

Powdery mildew diseases of various crops and other plants are caused by many different species of fungi grouped into main genera in Erysiphales which is an order including a single family, the Erysiphaceae. The Erysiphaceae is a group of plant pathogenic fungi that cause powdery mildew diseases on about 10,000 angiosperm species as obligate biotroph (Takamatsu *et al.*, 2008; Ito and Takamatsu, 2010). The powdery mildew fungi are biotrophic parasites, with many species hoven, 2005). Podosphaera is a genus of the powdery mildew fungi belonging to the tribe Cystotheceae of the Erysiphaceae (Braun and Takamatsu, 2000). P. (syn. Sphaerotheca) xanthii (or *fusca*) is also known to be a main causal agent of powdery mildew on various cucurbit plants and one of the most important limiting factors for cucurbit production worldwide (Shin et al., 2006; Perez-Garcia et al., 2009; Kousik et al., 2011; Park et al., 2011a, 2011b; Siddiqui et al., 2011). The species has been speculated to be a ubiquitous fungus with a broad host range. The taxonomy of the powdery mildew fungi recently underwent extensive revision based on rDNA sequence data (Mori et al., 2000; Heffer et al., 2006; Ito and Takamatsu, 2010). The nomenclature of these fungi has not yet been completely standardized in the literature. Furthermore, many basic aspects of the biology of P. xanthii remain unknown even though considerable efforts have been done to control the powdery mildew diseases it causes.

invading only epidermal cells by means of haustoria (Huckel-

In Korea, various Phodosphaera species, including P. tridactyla on Japanese plum; P. ferruginea on goat's-beard; P. phaseoli on Vigna spp. including mung bean; P. fusca on Lactuca sativa, etc have been shown to cause powdery mildews (Shin, 2000). Only two powdery mildew pathogens, including Erysiphe cichoracearum (syn. Golovinomyces cichoracearum) in Japan and Leveillula compositarum in China, have been reported to occur on *Cirsium japonicum* (Farr and Rossman, 2012). The Japanese thistle plant is a species of the chrysanthemum family (Asteraceae) native to eastern Asia. The powdery mildew disease caused by Podosphaera species has been commonly observed on Japanese thistle leaves in most areas of Korea. However, there have been no detailed descriptions of the anamorph and teleomorph of Korean strains of Podosphaera species on Japanese thistle and detailed information on the molecular phylogenetic status of the fungal species is currently unavailable.

The objectives of this study were to investigate the outbreak of Japanese thistle leaf powdery mildew, to describe morphological characteristics (anamorph and teleomorph) of a Korean strain of *Podosphaera* species and to determine the molecular phylogenetic status of the causal pathogen based on ITS and 28S rDNA sequence analyses.

Occurrence of powdery mildew on Japanese thistle

From August to October in both 2011 and 2012, a powdery

^{*}For correspondence. E-mail: hblee@jnu.ac.kr; Tel.: +82-62-530-2136; Fax: +82-62-530-2139

1076 Lee

Table 1. Podosphaera taxa used for molecular phylogenetic analysis in this study

Taxon name	Collection no. (Isolate no.)	Source (host)	Origin -	GenBank accession no.	
				ITS	28S
Podosphaera aphanis	R_Sco1b	Rubus subg. idaeobatus (raspberry)	UK	GU942462	
Podosphaera aphanis	S_Italy3	Fragaria x ananassa (strawberry)	Italy	GU942447	
Podosphaera aphanis	GOU1	NI**	NI	HQ918168	
Podosphaera balsaminae	MUMH2658	Impatiens noli-tangere	Japan	AB462805	AB462789
Podosphaera balsaminae	MUMH2841	Impatiens noli-tangere	Japan	AB462806	
Podosphaera balsaminae	MUMH245	Impatiens textori	Japan	AB040344	
Podosphaera balsaminae	MUMH1231	Impatiens textori	Japan		AB462787
Podosphaera cercidiphylli	MUMHS67	Cercidiphyllum japonicum	Japan	AB026140	
Podosphaera clandestina	MUMH327	Spiraea japonica	Japan	AB026150	
Podosphaera clandestina	VPRI 22119	Collomia linearis	USA	AF298546	
Podosphaera clandestina	MUMH1869	Crataegus oxyacantha	Argentina		AB525931
Podosphaera clandestina	NI	Cydonia oblonga	Iran		AB103367
Podosphaera clandestina	MUMH4968	Amelanchier laevis	Germany		AB525927
Podosphaera diclipterae	MUMH4056	Peristrophe japonica	Japan		AB462795
Podosphaera elsholtziae	MUMHS131	Ajuga reptans	Japan	AB026142	
Podosphaera epilobii	MUMH1873	Epilobium ciliatum	Argentina		AB525926
Podosphaera euphorbiae-hirtae	MUMH319	Acalypha australis	NI	AB040306	
Podosphaera euphorbiae-helioscopiae	CJLCC100	Euphorbia pekinensis	China		JF795491
Podosphaera ferruginea	NI	Sanguisorba officinalis	NI	AB027232	
Podosphaera fuliginea	PFZK2	Cucumis melo	China	JN627139	
Podosphaera fuliginea	Harbin1	Cucumis melo	China	EU294368	
Podosphaera fuliginea	HNZK4	Cucurbita moschata	China	JN860054	
Podosphaera fuliginea	MUMH303	Veronicastrum japonicum	Japan		AB462761
Podosphaera fugax	MUMH343	Geranium thunbergii	Japan	AB026134	AB525922
Podosphaera fusca	Sf202	NI	NI	EF137838	
Podosphaera fusca	MUMH108	Syneilesis palmata	Japan	AB040349	
Podosphaera fusca	MUMH1933	Calendula officinalis	Argentina	AB525914	
Podosphaera fusca	MUMH 2432	Calendula officinalis	Argentina	AB525915	
Podosphaera fusca	VPRI19332	Abelmoschus ficulneus	NI	AB040293	
Podosphaera fusca	NI	Calendula officinalis	Italy	EU140957	
Podosphaera fusca	NI	Calendula officinalis	Slovenia	EU159425	
Podosphaera fusca	81955	NI	NI	EF137860	
Podosphaera fusca	43116	NI	NI	EF088830	
Podosphaera fusca	MUMH304	Calendula officinalis	Japan		AB462762
Podosphaera fusca	MUMH311	Arctium lappa	Japan		AB462767
Podosphaera fusca	MUMH323	Lactuca indica	Japan		AB462773
Podosphaera fusca	MUMH328	Lactuca raddeana var. elata	Japan		AB462776
Podosphaera fusca	MUMHs142	Rudbeckia sp.	Japan		AB462798
Podosphaera intermedia	MUMH331	Clerodendrum trichotomum	Japan	AB026145	AB462777
Podosphaera leucotricha	N6-08	Prunus persica cv.summerset	Serbia	HM579841	
Podosphaera leucotricha	JH001	Malus prunifolia	Korea	HM242221	
Podosphaera leucotricha	BPI 8/9141	Pyrus calleryana	USA	GU122230	
Podosphaera leucotricha	VPRI 17729	Malus domestica	USA	AF073353	1 DESEGSE
Podosphaera lini	MUMH1392	Linum usitatissimum	Switzerland		AB525925
Podosphaera negeri	MUMH14/9	Escallonia rubra	Argentina		AB525920
Podosphaera negeri	MUMH1478	Escallonia rubra	Argentina	11) (5500 (5	AB525919
Podosphaera pannosa	P4-4	Prunus persica	France	HM5/984/	
Podosphaera pannosa	NI	Cherry tree	France	JN654341	4 0022247
Pouospnaera pannosa		Rosa sp.	INI American		AB02234/
Podosphaera pannosa	MUMH 14/6	Kosa rubiginosa Circium interesi	Argentina	IVOOCOC	AB52593/
Podosthaana stinger	EMIL-CSPW1	Custum juponicum	Korea	JA090080	JA09008/
Podosphaera spiraeae	MUMH566	Spiraea inunvergii Eilipandula purpur	Japan	AD020153	A P022284
Podosthaana tuidaatula	INI VDDI 1000C	Empenana purpurea var. purpurea	INI	ADU22385	ADU22384
Podosphaera tridactyla	V PKI 19006	Prunus sp.	USA	AF154321	
rouosphaera tridactyla	INI	Prunus armeniaca (apricot)	INI	AF011318	

Table 1. Continued

	Collection no. (Isolate no.)	Source (host)	Origin –	GenBank accession no	
Taxon name				ITS	285
Podosphaera tridactyla	KUS-F26292	Prunus salicina	Korea	JQ517296	
Podosphaera tridactyla	NI	Prunus japonica	NI		AB022393
Podosphaera xanthii	97-24	Cucumis sativus	Japan	AB040330	
Podosphaera xanthii	MUMH68	Melothria japonica	Japan	D84387	
Podosphaera xanthii	MUMH808	Verbenax hybrida	USA	AB046985	
Podosphaera xanthii	97-12	Cucumis sativus	Japan	AB040324	
Podosphaera xanthii	MUMH65	Cucumis sativus	NI	AB026146	
Podosphaera xanthii	KUS-F25630	Cucurbita moschata	Korea	JQ409565	
Podosphaera xanthii	1C	Senna occidentalis	Mexico	JQ728480	
Podosphaera xanthii	MUMH309	Cucurbita maxima	Japan		AB462766
Podosphaera xanthii	MUMH326	Dunbaria villosa	Japan		AB462775
Podosphaera xanthii	MUMH434	Trichosanthes kirilowii var. japonica	Japan		AB462786
Podosphaera xanthii	MUMH339	Glycine max subsp. max	Japan		AB462783
Podosphaera xanthii	MUMH337	Helianthus annuus	Japan		AB462781
Podosphaera xanthii	MUMH338	Zinnia elegans	Japan		AB462782
Podosphaera xanthii	MUMH340	Vigna unguiculata	Japan		AB462784
Podosphaera xanthii	MUMH342	Crotalaria juncea	Japan		AB462785
Podosphaera xanthii	MUMH3864	Zehneria japonica	Japan		AB462792
Phyllactinia guttata	NI	Corylus cornuta	NI	AF011315	
Phyllactinia guttata	SMK17204	Rhododendron schlippenbachii	Korea		AB080435

^a Korean *Phodosphaera* strain isolated from *Cirsium japonicum*. **NI: no information. BPI: U.S. National Fungus Collections (BPI), USDA-Agricultural Research Service, EML: Environment Microbiology Lab Herbarium, Chonnam National University, Korea. KUS: Herbarium of Korea University. MUMH: Mie University Mycological Herbarium, Japan. SMK: Mycological Herbarium, Division of Environmental Science & Ecological Engineering Korea University, Korea. VPRI: Plant Research Institute Herbarium, Australia.

mildew disease was observed on the leaves of Japanese thistle collected from several areas including Cheongyang, Gwangju, and Wando, South Korea (Fig. 1). Additional surveys showed that the disease was widespread in most areas of Korea, including Chungcheong and Jeonnam provinces, South Korea. The initial symptom of this disease was observed in late July to August, and included scattered superficial white mycelia, forming small circular colonies. As the disease progressed, the leaves turned blackish brown and had numerous necrotic black spots showing chasmothecia. When the disease developed, whole parts (leaf, stem, and petiole) of the plant were covered with fungal mats including white anamorphic mycelia and blackish teleomorphic structures. The ascocarps were abundantly formed on both surfaces of the leaves in late September to October, causing slight veinal necrosis and chlorosis. Three specimens examined in this

Fig. 1. Powdery mildew caused by *Podosphaera xanthii* on *C. japonicum* and morphology of the causative fungus, *Podosphera* sp. EML-CSPW1. (A) White superficial mycelia on leaves, stems and petioles, (B, C) Abundant necrotic black spots showing chasmothecia, (D) Chasmothecium with hyphoid appendages (400×), (E) Ruptured chasmothecium containing ascus (black arrow), but not bearing apparent ascospores, (F–K) Conidiophores and conidia; F–H, Euoidium types of conidiophores and ellipsoidal conidia; I–K, Conidiophores bent and cylindrical foot cells with a slight constriction at the base (black arrow I), and foot cell with basal septum adjacent to the mycelium (black arrow in K) (400×).

study were collected near Gwangju river in 2011. Fresh samples infected with the powdery mildew pathogen were examined using light microscopy. The dried specimens were deposited as EML-CSPW1, -CSPW2 and -CSPW3 at EMLH (Env. Microbiol. Lab Herbarium, Chonnam National University, Gwangju, Korea).

Morphological characteristics of powdery mildew fungus

As shown in Fig. 1, conidia of the powdery mildew pathogen were hyaline, ellipsoid and borne in long chains or formed singly on conidiophore, and measured 29.3–33.7 (av. 31.5) μ m long × 14.3–17.1 (av. 15.8) μ m wide. Fibrosin bodies were observed in the conidia. The fungus produced euoidium type (Figs. 1F–1H) and/or cylindrical (Figs. 1I–1K) conidiophores. Conidiophores were straight to slightly curved showing a slight constriction at the base (Fig. 1I). They had cylindrical

foot cells with a basal septum adjacent to the subtending hypha (Fig. 1K). The size was 98.2-152.5 (av. 127.2) µm long. The cylindrical foot cells measured 15-30 (av. 23.2) µm long and were followed by 2-3 distal cells. Chasmothecia were present on both abaxial and adaxial surfaces of leaves. They were yellow to brown when young and turned black at maturity, and they were 70.8-94.4 (av. 85.4) µm long. Chasmothecia bore hyphoid appendages and contained asci, but not bearing apparent ascospores. Morphologically, the conidia and conidiophores of our strain fully agreed with previous records of *Podosphaera xanthii* (Castagne) U. Braun & Shishkoff (Braun and Takamatsu, 2000; Glawe, 2006; Liberato *et al.*, 2006; Singh *et al.*, 2009; Cosme *et al.*, 2012) (Fig. 1).

Molecular phylogenetic analysis of powdery mildew fungus

To confirm the tentative identification based on the mor-

Fig. 2. Phylogenetic analysis of rDNA ITS (512 bp) sequences of 39 taxa and 28S (725 bp) sequences of 34 taxa, including EML-CSPW1 (GenBank accession nos. JX896686 and JX896687 for ITS and 28S, respectively). The percent sequence identity (the number of matches/the complete alignment length) values in the colored boxes were obtained via NCBI BLASTN search of each isolate. *Phyllactinia guttata* was used as an outgroup. Bootstrap values were shown above branches and were supported by more than 50% from 1,000 replications.

phological characteristics, rDNA sequence analysis of the three representative samples was performed. From extracted genomic DNA, the internal transcribed spacer (ITS) region including the 5.8S rDNA and 28S rDNA were amplified with the ITS1F (5'-CTTGGTCATTTAGAGGAAGT-3') and LR5F (5'-GCTATCCTGAGGGAAAC-3') primer set as described by Lee et al. (2011) and Lee (2012). The purified PCR products were sequenced using an ABI 3700 automated DNA sequencer. Out of three samples, the sequence information of EML-CSPW1 was successfully obtained. As shown in Table 1, phylogenetic analysis of rDNA ITS (512 bp) sequences of 39 taxa and 28S (725 bp) sequences of 34 taxa, including EML-CSPW1 (GenBank accession nos. JX896686 and JX896687 for ITS and 28S, respectively) were conducted, using BioEdit ver. 5.0.9.1, Clustal X ver. 1.83 (Thompson et al., 1997). Their phylogenies were assessed by employing programs available in the MEGA 4 (Tamura et al., 2007). The percent sequence identity (the number of matches/the complete alignment length) values in the colored boxes were obtained via NCBI BLASTN search of each isolate (Fig. 1).

When each of the rDNA ITS (GenBank accession no. JX 896686) and 28S (JX896687) sequences of the strain were compared with related species retrieved from NCBI Gen-Bank, EML-CSPW1 was completely matched with *P. xanthii* (syn. *P. fusca*) which belongs to the *xanthii* group, showing 100% identity values with many related strains of *P. xanthii* or *P. fusca*, via NCBI BLASTN search (Fig. 2). Additional studies on the morphological and genetic variation within Korean *Podosphaera* species from different hosts are now under way.

This paper reports the occurrence of powdery mildew caused by *P. xanthii* on Japanese thistle in South Korea and shows its molecular phylogenetic status falling into a Xanthii/Fusca group and teleomorphic/anamorphic characteristics of Korean strain of *P. xanthii* on *C. japonicum* which is widely dispersed throughout Korea.

For phylogenetic analysis of the Erysiphaceae, many rDNA nucleotide sequence data have been commonly used. rDNA sequence data are especially useful for identifying powdery mildew fungi in the absence of teleomorphs (Okomoto et al., 2002; Lee, 2012). The powdery mildew fungi were split into 5 major lineages including the Pseudoidium lineage consisting of 6 genera, i.e., Erysiphe, Microsphaera, Uncinula, Uncinuliella, Brasiliomyces, and Typhulochaeta; the Eudoidium lineage consisting of species formerly classified as Erysiphe species (such as E. cichoracearum, E. orontii and E. galeopsidis) and Arthrocladiella mougeotii; the endophytic lineage consisting of Phyllactinia species (such as P. moricola and *P. kakicola*), *Leveillula taurica* and *Pleochaeta shiraiana*; the fibrosin lineage consisting of genera Sawadaea, Cystotheca, Podosphaera, and Sphaerotheca; and the monocot lineage consisting of single species, Blumeria graminis based on nuclear ribosomal DNA sequences of (Mori et al., 2000; Braun et al., 2006). Recently, Podosphaera was divided into 2 clades: clade 1, consisting of the section Podosphaera on Prunus (P. tridactyla s.l.); and subsection Magnicellulatae; and clade 2, composed of the other member of section Podosphaera and subsection Sphaerotheca based on ITS and 28S rDNA sequence analyses (Takamatsu et al., 2010). Although these data are sometimes insufficient to confirm identifications, some

fragmentary molecular data including ITS rDNA sequence are becoming increasingly available and can be useful in complementing other data.

P. xanthii is commonly and widely distributed and has been designated variously as *Sphaerotheca fuliginae*, *Sphaerotheca fusca*, and *Podosphaera fusca*. Separation of *P. xanthii* from the *P. fusca* group was proposed based on morphological properties of teleomorph. It has been known that the natural variation of morphological characters within a species make it difficult to assess the phylogenetic status at the species level. Currently, many mycologists have considered *P. xanthii* (*fusca*) as a synonym of *P. fusca* (*xanthii*) although this separation has remained controversial. In the present study, the approach based on the molecular classification system was found to be useful for construction of the phylogenetic tree with regard to *Podosphera* species, showing that the two species belong to a distinct Xanthii/Fusca Group.

It is known that powdery mildew pathogens tend to thrive in conditions with less moisture and higher temperature. With respect to the climate change, we need to continuously monitor the occurrences of new plant diseases and epidemics of unrecorded or recorded plant diseases. The information gathered through our field surveys will be useful for better understanding of agricultural environment in relation to impacts of climate change and effectively responding to the matters.

Author is grateful to Dr. Dean Glawe of Washington State University, for kindly reviewing the manuscript. This study was funded by NRF (2010-0012153) and in part supported by the Technology Development Program (111095-3) for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

References

- Braun, U. and Takamatsu, S. 2000. Phylogeny of *Erysiphe, Microsphaera, Uncinula* (Erysipheae) and *Cystotheca, Podosphaera, Sphaerptheca* (Cystotheceae) inferred from rDNA ITS sequences some taxonomic consequences. *Schlechtendalia* **4**, 1–33.
- Braun, U., Takamatsu, S., Heluta, V., Limkaisang, S., Divarangkoon, R., Cook, R., and Boyle, H. 2006. Phylogeny and taxonomy of powdery mildew fungi of *Erysiphe* sect. *Uncinula* on *Carpinus* species. *Mycol. Prog.* 5, 139–153.
- Cosme, B.-R., Josefina, L.-F., Raul, A.-M., Dolores, M.-R.M., Amando, C.-F.J., Benigno, V.-T.J., Mell, L.-S.F.S., and Saul, G.-E.R. 2012. Characterization of powdery mildew in cucumber plants under greenhouse conditions in the Culiacan Valley, Sinaloa, Mexico. *Afr. J. Agric. Res.* 7, 3237–3248.
- Farr, D.F. and Rossman, A.Y. 2012. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/.
- **Glawe, D.A.** 2006. Synopsis of genera of Erysiphales (powdery mildew fungi) occurring in the Pacific. *Northwest-Pacific Northwest Fungi* **1**, 1–27.
- Heffer, V., Johnson, K.B., Powelson, M.L., and Shishkoff, N. 2006. Identification of powdery mildew fungi anno 2006. *The Plant Health Instructor*. [http://www.apsnet.org/edcenter/intropp/Lab-Exercises/Pages/PowderyMildew.aspx].
- Huckelhoven, R. 2005. Powdery mildew susceptibility and biotrophic infection strategies. *FEMS Microbiol. Lett.* **245**, 9–17.
- Ito, M. and Takamatsu, S. 2010 Molecular phylogeny and evolu-

1080 Lee

tion of subsection Magnicellulatae (Erysiphaceae: *Podosphaera*) with special reference to host plants. *Mycoscience* **51**, 34–43.

- Kousik, C.S., Webster, C.G., Turechek, W.W., Adkins, S.T., and Roberts, P.D. 2011. Outbreak of cucurbit powdery mildew on watermelon fruit caused by *Podosphaera xanthii* in Southwest Florida. *Plant Disease* 95, 1586.
- Lee, H.B. 2012. First report of powdery mildew caused by *Erysiphe arcuata* on lanceleaf coreopsis (*Coreopsis lanceolata*) in Korea. *Plant Disease* **96**, 1827.
- Lee, H.B., Kim, C.J., and Mun, H.Y. 2011. First report of *Erysiphe quercicola* causing powdery mildew on Ubame oak in Korea. *Plant Disease* **95**, 77.
- Liberato, J.R., Shivas, R.G., and Cunnington, J.H. 2006. Podosphaera xanthii on Euryops chrysanthemoides in Australia. Australasian Plant Pathol. 35, 739–741.
- Mori, Y., Sato, Y., and Takamatsu, S. 2000. Evolutionary analysis of the powdery mildew fungi using nucleotide sequences of the nuclear ribosomal DNA. *Mycologia* 92, 74–93.
- Okamoto, J., Limkaisang, S., Nojima, H., and Takamatsu, S. 2002. Powdery mildew of prairie gentian: Characteristics, molecular phylogeny and pathogenicity. *J. Gen. Plant Pathol.* **68**, 200-207.
- **Osava, M.** 2010. BRAZIL: Climate change means new crop health concerns. Inter Press Service. http://www.ipsnews.net/2010/12/ brazil-climate-change-means-new-crop-health-concerns/b.
- Park, M.J., Park, J.-H., Kwon, J.-H., and Shin, H.D. 2011a. Powdery mildew of Momordica charantia caused by Podosphaera fusca in Korea. Plant Pathol. J. 27, 99.
- Park, M.J., Park, J.-H., Kwon, J.-H., and Shin, H.D. 2011b. Powdery mildew of *Rudbeckia hirta* var. *pulcherrima* caused by *Podosphaera fusca*. *Plant Pathol. J.* 27, 191.
- Perez-Garcia, A., Romero, D., Fernandez-Ortuno, D., Lopez-Ruiz, F., De Vincente, A., and Tores, J.A. 2009. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a

constant threat to cucurbits. Mol. Plant Pathol. 2, 153-160.

- Shin, H.D. 2000. Erysiphaceae of Korea. National Academy of Agriculture Science. Suwon, Korea.
- Shin, H.D., Jee, H.J., and Shim, C.K. 2006. First report of powdery mildew caused by *Podosphaera fusca* on *Lactuca sativa* in Korea. *Plant Pathol.* 55, 814.
- Siebold, M. and Tiedemann, A.V. 2012. Potential effects of global warming on oilseed rape pathogens in Northern Germany. *Fungal Ecol.* 5, 62–72.
- Singh, R., Ferrin, D.M., and Aime, M.C. 2009. First report of powdery mildew caused by *Podosphaera xanthii* on *Sechium edule* in the United States. *Plant Disease* 93, 1348.
- Siddiqui, Y., Sariah, M., and Kausar, H. 2011. First report of *Podosphaera fusca* causing powdery mildew of *Cosmos caudatus* in Malaysia. *Plant Disease* **95**, 495.
- Takamatsu, S., Havrylenko, M., Wolcan, S.M., Matsuda, S., and Minomi, S. 2008. Molecular phylogeny and evolution of the genus *Neoerysiphe* (Erysiphaceae, Ascomycota). *Mycol. Res.* 112, 639–649.
- Takamatsu, S., Niinomi, S., Harada, M., and Havrylenko, M. 2010. Molecular phylogenetic analyses reveal a close evolutionary relationship between *Podosphaera* (Erysiphales: Erysiphaceae) and its rosaceous hosts. *Persoonia* 24, 38–48.
- Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* 24, 1596-1599.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 25, 4876-4882.
- Yu, Y., Heo, S.I., and Wang, H.-H. 2008. Antioxidant and anticancer activities of methanol and water extracts from leaves of *Cirsium japonicum. J. Appl. Biol. Chem.* 51, 160–164.